Solution to Homework Assignment No. 1

1. (a) (i) Perform elimination as follows:

$$
\begin{aligned}
{\left[\begin{array}{llll|l}
2 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 2 & 5
\end{array}\right] } & \left.\Longrightarrow\left[\begin{array}{llll|l}
2 & 1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 2 & 5
\end{array}\right] \text { (subtract } 1 / 2 \times \text { row } 1\right) \\
& \left.\Longrightarrow\left[\begin{array}{llll|l}
2 & 1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & 1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & 1 & 0 \\
0 & 0 & 1 & 2 & 5
\end{array}\right] \quad \text { (subtract } 2 / 3 \times \text { row } 2\right) \\
& \Longrightarrow\left[\begin{array}{llll|l}
2 & 1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & 1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & 1 & 0 \\
0 & 0 & 0 & \frac{5}{4} & 5
\end{array}\right]
\end{aligned}
$$

This system is equivalent to

$$
\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & \frac{3}{2} & 1 & 0 \\
0 & 0 & \frac{4}{3} & 1 \\
0 & 0 & 0 & \frac{5}{4}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
5
\end{array}\right] .
$$

Then we can solve the equations by back substitution as

$$
\left\{\begin{array} { l }
{ 2 x + y = 0 } \\
{ \frac { 3 } { 2 } y + z = 0 } \\
{ \frac { 4 } { 3 } z + t = 0 } \\
{ \frac { 5 } { 4 } t = 5 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x = - \frac { 1 } { 2 } y } \\
{ y = - \frac { 2 } { 3 } z } \\
{ z = - \frac { 3 } { 4 } t } \\
{ t = 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=-1 \\
y=2 \\
z=-3 \\
t=4
\end{array}\right.\right.\right.
$$

The pivots are $2,3 / 2,4 / 3$, and $5 / 4$, and the solution is $(x, y, z, t)=$ $(-1,2,-3,4)$.
(ii) Perform elimination as follows:

$$
\begin{aligned}
{\left[\begin{array}{cccc|c}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right] } & \left.\Longrightarrow\left[\begin{array}{cccc|c}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right] \quad \text { (subtract }-1 / 2 \times \text { row } 1\right) \\
& \left.\Longrightarrow\left[\begin{array}{cccc|c}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & -1 & 0 \\
0 & 0 & -1 & 2 & 5
\end{array}\right] \quad \text { (subtract }-2 / 3 \times \text { row } 2\right) \\
& \left.\Longrightarrow\left[\begin{array}{cccc|c}
2 & -1 & 0 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 & 0 \\
0 & 0 & \frac{4}{3} & -1 & 0 \\
0 & 0 & 0 & \frac{5}{4} & 5
\end{array}\right] \quad \text { (subtract }-3 / 4 \times \text { row } 3\right)
\end{aligned}
$$

This system is equivalent to

$$
\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & \frac{3}{2} & -1 & 0 \\
0 & 0 & \frac{4}{3} & -1 \\
0 & 0 & 0 & \frac{5}{4}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
5
\end{array}\right]
$$

Then we can solve the equations by back substitution as

$$
\left\{\begin{array} { l }
{ 2 x - y = 0 } \\
{ \frac { 3 } { 2 } y - z = 0 } \\
{ \frac { 4 } { 3 } z - t = 0 } \\
{ \frac { 5 } { 4 } t = 5 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x = \frac { 1 } { 2 } y } \\
{ y = \frac { 2 } { 3 } z } \\
{ z = \frac { 3 } { 4 } t } \\
{ t = 4 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=1 \\
y=2 \\
z=3 \\
t=4
\end{array}\right.\right.\right.
$$

The pivots are $2,3 / 2,4 / 3$, and $5 / 4$, and the solution is $(x, y, z, t)=$ (1, 2, 3, 4).
(b) Do elimination once more, and we can obtain the fifth pivot equal to 2 $(5 / 4)^{-1}=6 / 5$. Observe the pivots, $2,3 / 2,4 / 3,5 / 4,6 / 5, \cdots$, and we can guess that the nth pivot is equal to $(n+1) / n$.
Claim: The nth pivot is $(n+1) / n$.
Proof: When $n=1$, the 1 st pivot is $2 / 1$.
Assume when $n=k-1$, the k th pivot is $k /(k-1)$.
By observing the procedure of elimination, we can know that the k th pivot is generated in the following way:

$$
\text { the } k \text { th pivot }=2-\frac{1}{\text { the }(k-1) \text { th pivot }}=2-\frac{k-1}{k}=\frac{k+1}{k} .
$$

By induction, we conclude that the nth pivot is $(n+1) / n$.
2. Pascal's triangle is defined as

$$
\begin{gathered}
1 \\
11 \\
121 \\
1331
\end{gathered}
$$

The i th row of Pascal's triangle has i components denoted as $\left[P_{i, 1}, P_{i, 2}, \ldots, P_{i, i}\right]$ which are derived by

$$
\left[P_{i, 1}, P_{i, 2}, \ldots, P_{i, i}\right]=\left[P_{i-1,1}, P_{i-1,2}, \ldots, P_{i-1, i-1}, 0\right]+\left[0, P_{i-1,1}, P_{i-1,2}, \ldots, P_{i-1, i-1}\right]
$$

For example, the components of the 4th row are given by

$$
[1,3,3,1]=[1,2,1,0]+[0,1,2,1] .
$$

To reduce the Pasical matrix to a smaller one as

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right]
$$

we can subtract the $(i-1)$ th row from the i th row of the original matrix for $i=2,3,4$. This process can be expressed by

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] .
$$

Therefore, we have

$$
\boldsymbol{E}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]
$$

In a similar way, we can reduce the Pascal matrix all the way to an identity matrix as

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \Longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

Therefore, we can have

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
1 & 3 & 3 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

The desired matrix is then given by

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
1 & -2 & 1 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right] .
$$

3. (a) Using the Gauss-Jordan method, we can have

$$
\begin{aligned}
{[\boldsymbol{A} \mid \boldsymbol{I}] } & =\left[\begin{array}{lll|lll}
2 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 & 1 & 0 \\
1 & 1 & 2 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll|lll}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2} & 1 & 0 \\
0 & \frac{1}{2} & \frac{3}{2} & -\frac{1}{2} & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll|lll}
2 & 1 & 1 & 1 & 0 & 0 \\
0 & \frac{3}{2} & \frac{1}{2} & -\frac{1}{2} & 1 & 0 \\
0 & 0 & \frac{4}{3} & -\frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll|lll}
2 & 1 & 0 & \frac{5}{4} & \frac{1}{4} & -\frac{3}{4} \\
0 & \frac{3}{2} & 0 & -\frac{3}{8} & \frac{9}{8} & -\frac{3}{8} \\
0 & 0 & \frac{4}{3} & -\frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll|lll}
2 & 0 & 0 & \frac{3}{2} & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{3}{2} & 0 & -\frac{3}{8} & \frac{9}{8} & -\frac{3}{8} \\
0 & 0 & \frac{4}{3} & -\frac{1}{3} & -\frac{1}{3} & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & \frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\
0 & 1 & 0 & -\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
0 & 0 & 1 & -\frac{1}{4} & -\frac{1}{4} & -\frac{3}{4}
\end{array}\right]=\left[\boldsymbol{I} \mid \boldsymbol{A}^{-\mathbf{1}}\right] .
\end{aligned}
$$

The inverse is hence

$$
\boldsymbol{A}^{-\mathbf{1}}=\left[\begin{array}{ccc}
\frac{3}{4} & -\frac{1}{4} & -\frac{1}{4} \\
-\frac{1}{4} & \frac{3}{4} & -\frac{1}{4} \\
-\frac{1}{4} & -\frac{1}{4} & -\frac{3}{4}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & -3
\end{array}\right] .
$$

(b) Using the Gauss-Jordan method, we can have

$$
\begin{aligned}
{[\boldsymbol{B} \mid \boldsymbol{I}] }
\end{aligned} \quad=\left[\begin{array}{ccc|ccc}
2 & -1 & -1 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
-1 & -1 & 2 & 0 & 0 & 1
\end{array}\right] .
$$

Since we cannot obtain three nonzero pivots, \boldsymbol{B}^{-1} does not exist.
4. (a) Using the Gauss-Jordan method, we can have

$$
\begin{aligned}
{[\boldsymbol{A} \mid \boldsymbol{I}] } & =\left[\begin{array}{cccc|cccc}
1 & -1 & 1 & -1 & 1 & 0 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc|cccc}
1 & -1 & 1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{cccc|cccc}
1 & -1 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right] \\
& \Longrightarrow\left[\begin{array}{llll|llll}
1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\boldsymbol{I} \mid \boldsymbol{A}^{-\mathbf{1}}\right]
\end{aligned}
$$

We can then obtain

$$
\boldsymbol{A}^{-\mathbf{1}}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Extend \boldsymbol{A} to a 5×5 "alternating matrix" as

$$
\boldsymbol{A}_{5 \times 5}=\left[\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
0 & 1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

From the result of (a), we guess

$$
\boldsymbol{A}_{5 \times 5}^{-1}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Since

$$
\left[\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
0 & 1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{I}
$$

and

$$
\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccccc}
1 & -1 & 1 & -1 & 1 \\
0 & 1 & -1 & 1 & -1 \\
0 & 0 & 1 & -1 & 1 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]=\boldsymbol{I}
$$

we have confirmed that the inverse of the matrix is indeed

$$
\boldsymbol{A}_{5 \times 5}^{-1}=\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

5. (a) Performing elimination, we can have

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right] \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{U} .
$$

This procedure can be viewed as

$$
\boldsymbol{E}_{32} \boldsymbol{E}_{21} \boldsymbol{A}=\boldsymbol{U}
$$

where

$$
\boldsymbol{E}_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { and } \boldsymbol{E}_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

Then we have

$$
\boldsymbol{A}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{32}^{-1} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{U}
$$

where

$$
\boldsymbol{L}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

We find that $\boldsymbol{U}=\boldsymbol{L}^{T}=\boldsymbol{D} \boldsymbol{L}^{T}$ where $\boldsymbol{D}=\boldsymbol{I}$. We can therefore factor $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ and $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ as

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Performing elimination, we can have

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
a & a & 0 \\
a & a+b & b \\
0 & b & b+c
\end{array}\right] \stackrel{\boldsymbol{E}_{21}}{\Longrightarrow}\left[\begin{array}{ccc}
a & a & 0 \\
0 & b & b \\
0 & b & b+c
\end{array}\right] \stackrel{\boldsymbol{E}_{32}}{ }\left[\begin{array}{ccc}
a & a & 0 \\
0 & b & b \\
0 & 0 & c
\end{array}\right]=\boldsymbol{U}
$$

Since \boldsymbol{E}_{21} and \boldsymbol{E}_{32} are the same as those in (a), we know that \boldsymbol{A} has the same \boldsymbol{L}, too. The factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ is hence

$$
\left[\begin{array}{ccc}
a & a & 0 \\
a & a+b & b \\
0 & b & b+c
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
a & a & 0 \\
0 & b & b \\
0 & 0 & c
\end{array}\right] .
$$

We can further factor \boldsymbol{U} as

$$
\boldsymbol{U}=\left[\begin{array}{lll}
a & a & 0 \\
0 & b & b \\
0 & 0 & c
\end{array}\right]=\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{D} \boldsymbol{L}^{T} .
$$

The factorization $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{D} \boldsymbol{L}^{T}$ is thus given by

$$
\left[\begin{array}{ccc}
a & a & 0 \\
a & a+b & b \\
0 & b & b+c
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

6. (a) Given $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}$ and $\boldsymbol{A}=\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}$, we can have

$$
\begin{aligned}
& \boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}=\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1} \\
\Longrightarrow & \boldsymbol{L}_{1}^{-1}\left(\boldsymbol{L}_{2} \boldsymbol{D}_{2} \boldsymbol{U}_{2}\right) \boldsymbol{U}_{2}^{-1}=\boldsymbol{L}_{1}^{-1}\left(\boldsymbol{L}_{1} \boldsymbol{D}_{1} \boldsymbol{U}_{1}\right) \boldsymbol{U}_{2}^{-1} \\
\Longrightarrow & \boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1} .
\end{aligned}
$$

In order to explain why one side is lower triangular and the other side is upper triangular, we need to prove two claims first.

Claim 1: The inverse of a lower (upper) triangular matrix with unit diagonal is also lower (upper) triangular with unit diagonal.
Proof: (Lower triangular case)
Suppose \boldsymbol{L} is an $n \times n$ lower triangular matrix with unit diagonal and \boldsymbol{L}^{-1} exists. We can use Gauss-Jordan method to find \boldsymbol{L}^{-1}. We only need to do the Gaussian part. It means that the required operations are only to subtract the i th row from the j th row for $i<j$. Therefore, we can have

$$
\begin{aligned}
{[\boldsymbol{L} \mid \boldsymbol{I}] }
\end{aligned}=\left[\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 \\
l_{2,1} & 1 & \ddots & \vdots & 0 & 1 & 0 & 0 \\
\vdots & \ddots & \ddots & 0 & 0 & 0 & 1 & 0 \\
l_{n, 1} & \cdots & l_{n, n-1} & 1 & 0 & 0 & 0 & 1
\end{array}\right] .\left[\begin{array}{cccc|cccc}
1 & 0 & 0 & 0 & 1 & 0 & \cdots & 0 \\
0 & 1 & 0 & 0 & l_{2,1}^{\prime} & 1 & \ddots & \vdots \\
0 & 0 & 1 & 0 & \vdots & \ddots & \ddots & 0 \\
0 & 0 & 0 & 1 & l_{n, 1}^{\prime} & \cdots & l_{n, n-1}^{\prime} & 1
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{I} & \boldsymbol{L}^{-1}
\end{array}\right] .
$$

It is clear that \boldsymbol{L}^{-1} is lower triangular with unit diagonal. The upper triangular case can be proved similarly.

Claim 2: The product of two lower (upper) triangular matrices with unit diagonal is also lower (upper) triangular with unit diagonal.
Proof: (Lower triangular case)
Suppose \boldsymbol{A} and \boldsymbol{B} are two $n \times n$ lower triangular matrices with unit diagonal. We have $A_{i, j}=0$ if $i<j$ and $A_{i, j}=1$ if $i=j$, and $B_{i, j}=0$ if $i<j$ and $B_{i, j}=1$ if $i=j$. For $1 \leq i<j \leq n$, we have

$$
\begin{aligned}
(A B)_{i, j} & =\sum_{k=1}^{n} A_{i, k} B_{k, j} \\
& =\sum_{k=1}^{j-1} A_{i, k} B_{k, j}+\sum_{k=j}^{n} A_{i, k} B_{k, j} \\
& =0+0\left(B_{i, k}=0 \text { when } k<j, \text { and } A_{i, k}=0 \text { when } i<j \leq k .\right) \\
& =0 .
\end{aligned}
$$

Therefore, $\boldsymbol{A B}$ is lower triangular. For $1 \leq i=j \leq n$, we have

$$
\begin{aligned}
(A B)_{i, i} & =\sum_{k=1}^{n} A_{i, k} B_{k, i} \\
& =\sum_{k=1}^{i-1} A_{i, k} B_{k, i}+A_{i, i} B_{i, i}+\sum_{k=i+1}^{n} A_{i, k} B_{k, i} \\
& =0+1 \cdot 1+0\left(B_{i, k}=0 \text { when } k<i, A_{i, i}=B_{i, i}=1, \text { and } A_{i, k}=0 \text { when } i<k\right) \\
& =1
\end{aligned}
$$

Therefore, $\boldsymbol{A} \boldsymbol{B}$ has unit diagonal. We can conclude that $\boldsymbol{A} \boldsymbol{B}$ is also lower triangular with unit diagonal. The upper triangular case can be proved similarly.

Let $\boldsymbol{A}=\left[\begin{array}{c}\underline{\mathbf{a}}_{1} \\ \underline{\mathbf{a}}_{2} \\ \vdots \\ \underline{\mathbf{a}}_{n}\end{array}\right]$, where $\underline{\mathbf{a}}_{i}=\left[\begin{array}{llll}a_{i, 1} & a_{i, 2} & \cdots & a_{i, n}\end{array}\right]$, and \boldsymbol{D} be a diagonal matrix
with diagonal elements $d_{1}, d_{2}, \ldots, d_{n}$. We can have

$$
\boldsymbol{A} \boldsymbol{D}=\left[\begin{array}{c}
\underline{\mathbf{a}}_{1} \\
\underline{\mathbf{a}}_{2} \\
\vdots \\
\underline{\mathbf{a}}_{n}
\end{array}\right]\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & d_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \mathbf{a}_{1} \\
d_{2} \underline{\mathbf{a}}_{2} \\
\vdots \\
d_{n} \underline{\mathbf{a}}_{n}
\end{array}\right]
$$

and

$$
\boldsymbol{D} \boldsymbol{A}=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & 0 & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & d_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{a}_{1} \\
\underline{\mathbf{a}}_{2} \\
\vdots \\
\underline{\mathbf{a}}_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \underline{\mathbf{a}}_{1} \\
d_{2} \underline{\mathbf{a}}_{2} \\
\vdots \\
d_{n} \underline{\mathbf{a}}_{n}
\end{array}\right]
$$

Therefore, a lower (upper) triangular matrix multiplied by a diagonal matrix is still a lower (upper) triangular matrix. Come back to $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=$ $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$. By Claim 1, \boldsymbol{L}_{1}^{-1} is lower triangular with unit diagonal. By Claim 2, $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}$ is lower triangular with unit diagonal. Therefore, $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}$ is lower triangular. Similarly, $\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ is upper triangular.
(b) Let $\boldsymbol{M}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$. Then \boldsymbol{M} is both lower and upper triangular, which implies that \boldsymbol{M} is a diagonal matrix.
(i) Since $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ is with unit diagonal, $\boldsymbol{M}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}$ has the same diagonal as \boldsymbol{D}_{1}. It implies that $\boldsymbol{M}=\boldsymbol{D}_{1}$. Similarly, we can have $\boldsymbol{M}=\boldsymbol{D}_{2}$. Therefore, $\boldsymbol{D}_{1}=\boldsymbol{D}_{2}$.
(ii) For $\boldsymbol{M}=\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2} \boldsymbol{D}_{2}=\boldsymbol{D}_{2}$, we have $\boldsymbol{L}_{1}^{-1} \boldsymbol{L}_{2}=\boldsymbol{I}$. Since the inverse matrix is unique, we have $\boldsymbol{L}_{2}=\left(\boldsymbol{L}_{1}^{-1}\right)^{-1}=\boldsymbol{L}_{1}$.
(iii) Similarly, for $\boldsymbol{M}=\boldsymbol{D}_{1} \boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{D}_{1}$, we have $\boldsymbol{U}_{1} \boldsymbol{U}_{2}^{-1}=\boldsymbol{I}$. It then implies that $\boldsymbol{U}_{1}=\left(\boldsymbol{U}_{2}^{-1}\right)^{-1}=\boldsymbol{U}_{2}$.
7. Since \boldsymbol{A} and \boldsymbol{B} are symmetric matrices, it implies that $\boldsymbol{A}^{T}=\boldsymbol{A}$ and $\boldsymbol{B}^{T}=\boldsymbol{B}$.
(a) We have

$$
\left(\boldsymbol{A}^{2}\right)^{T}=(\boldsymbol{A} \boldsymbol{A})^{T}=\left(\boldsymbol{A}^{T} \boldsymbol{A}^{T}\right)=\boldsymbol{A} \boldsymbol{A}=\boldsymbol{A}^{2}
$$

Therefore, \boldsymbol{A}^{2} is symmetric, and so is \boldsymbol{B}^{2}. Since

$$
\left(\boldsymbol{A}^{2}-\boldsymbol{B}^{2}\right)^{T}=\left(\boldsymbol{A}^{2}\right)^{T}-\left(\boldsymbol{B}^{2}\right)^{T}=\boldsymbol{A}^{2}-\boldsymbol{B}^{2}
$$

$\boldsymbol{A}^{2}-\boldsymbol{B}^{2}$ is also symmetric.
(b) The product $(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B})$ is not always symmetric. A counterexample is given as follows. Consider two symmetric matrices

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

and we can have

$$
(\boldsymbol{A}+\boldsymbol{B})(\boldsymbol{A}-\boldsymbol{B})=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 2 & 0 \\
3 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 1 & 1 \\
2 & 3 & 3
\end{array}\right]
$$

which is not a symmetric matrix.
(c) Since $(\boldsymbol{A B} \boldsymbol{A})^{T}=\boldsymbol{A}^{T} \boldsymbol{B}^{T} \boldsymbol{A}^{T}=\boldsymbol{A} \boldsymbol{B} \boldsymbol{A}, \boldsymbol{A} \boldsymbol{B} \boldsymbol{A}$ is symmetric.
(d) The product $\boldsymbol{A} \boldsymbol{B} \boldsymbol{A} \boldsymbol{B}$ is not always symmetric. A counterexample is given as follows. Consider two symmetric matrices

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \text { and } \boldsymbol{B}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

and we can have

$$
\boldsymbol{A} \boldsymbol{B} \boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{ccc}
19 & 4 & 19 \\
7 & 2 & 7 \\
18 & 3 & 18
\end{array}\right]
$$

which is not a symmetric matrix.
8. (a) First do row exchange as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 3
\end{array}\right] \xrightarrow{\boldsymbol{P}_{13}}\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 4 & 1 \\
1 & 2 & 0
\end{array}\right]=\boldsymbol{P} \boldsymbol{A}
$$

and then perform elimination as

$$
\left[\begin{array}{lll}
1 & 1 & 3 \\
2 & 4 & 1 \\
1 & 2 & 0
\end{array}\right] \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 2 & -5 \\
1 & 2 & 0
\end{array}\right] \xrightarrow{\boldsymbol{E}_{31}}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 2 & -5 \\
0 & 1 & -3
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 2 & -5 \\
0 & 0 & -\frac{1}{2}
\end{array}\right]=\boldsymbol{U} .
$$

Then we have

$$
\boldsymbol{E}_{32} \boldsymbol{E}_{31} \boldsymbol{E}_{21}(\boldsymbol{P} \boldsymbol{A})=\boldsymbol{U}
$$

where
$\boldsymbol{P}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right], \boldsymbol{E}_{21}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \boldsymbol{E}_{31}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right]$, and $\boldsymbol{E}_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1\end{array}\right]$.
Multiplying $\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1}$ to both sides, we can have

$$
\boldsymbol{P} \boldsymbol{A}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{U}
$$

where

$$
\boldsymbol{L}=\boldsymbol{E}_{1}^{-1} \boldsymbol{E}_{2}^{-1} \boldsymbol{E}_{3}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & \frac{1}{2} & 1
\end{array}\right]
$$

The factorization $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ is hence given by

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & \frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 3 \\
0 & 2 & -5 \\
0 & 0 & -\frac{1}{2}
\end{array}\right] .
$$

In order to factor \boldsymbol{A} into $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$, we first perform elimination as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 3
\end{array}\right] \stackrel{\boldsymbol{E}_{21}}{\Longrightarrow}\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1 \\
1 & 1 & 3
\end{array}\right] \xrightarrow{\boldsymbol{E}_{31}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & -1 & 3
\end{array}\right]
$$

and then do row exchange as

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & -1 & 3
\end{array}\right] \xrightarrow{\boldsymbol{P}_{23}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 3 \\
0 & 0 & 1
\end{array}\right]=\boldsymbol{U}_{\mathbf{1}}
$$

Therefore,

$$
\boldsymbol{U}_{\mathbf{1}}=\boldsymbol{P}_{1} \boldsymbol{E}_{31} \boldsymbol{E}_{21} \boldsymbol{A}
$$

where

$$
\boldsymbol{P}_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \boldsymbol{E}_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text {, and } \boldsymbol{E}_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] .
$$

Multiplying $\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{31}^{-1} \boldsymbol{P}_{1}^{-1}$ from the left to both sides, we can have

$$
\boldsymbol{A}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{31}^{-1} \boldsymbol{P}_{1}^{-1} \boldsymbol{U}_{1}
$$

where $\boldsymbol{P}_{1}^{-1}=\boldsymbol{P}_{1}$ and

$$
\boldsymbol{L}_{1}=\boldsymbol{E}_{21}^{-1} \boldsymbol{E}_{31}^{-1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

The factorization $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$ is hence given by

$$
\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 1 \\
1 & 1 & 3
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & -1 & 3 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Do row exchange and elimination as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 4 & 5 \\
0 & 1 & 2 \\
2 & 1 & 1
\end{array}\right] \xrightarrow{\boldsymbol{P}_{13}}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 4 & 5
\end{array}\right] \xrightarrow{\boldsymbol{E}_{32}}\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & -3
\end{array}\right]=\boldsymbol{U}=\boldsymbol{E}_{32} \boldsymbol{P} \boldsymbol{A} .
$$

We can have

$$
\boldsymbol{P} \boldsymbol{A}=\boldsymbol{E}_{32}^{-1} \boldsymbol{U}=\boldsymbol{L} \boldsymbol{U}
$$

where

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \text { and } \boldsymbol{L}=\boldsymbol{E}_{32}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right]
$$

The factorization $\boldsymbol{P} \boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ is hence given by

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 4 & 5 \\
0 & 1 & 2 \\
2 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & -3
\end{array}\right] .
$$

In order to factor \boldsymbol{A} into $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$, we perform elimination first as

$$
\boldsymbol{A}=\left[\begin{array}{lll}
0 & 4 & 5 \\
0 & 1 & 2 \\
2 & 1 & 1
\end{array}\right] \xrightarrow{\boldsymbol{E}_{21}}\left[\begin{array}{lll}
0 & 4 & 5 \\
0 & 0 & \frac{3}{4} \\
2 & 1 & 1
\end{array}\right] \stackrel{\boldsymbol{P}^{\prime}}{\Longrightarrow}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 4 & 5 \\
0 & 0 & \frac{3}{4}
\end{array}\right]=\boldsymbol{U}_{\mathbf{1}}=\boldsymbol{P}^{\prime} \boldsymbol{E}_{\mathbf{2 1}} \boldsymbol{A} .
$$

Then we can obtain

$$
\boldsymbol{A}=\boldsymbol{E}_{21}^{-1} \boldsymbol{P}^{\prime-1} \boldsymbol{U}_{1}
$$

where

$$
\boldsymbol{P}^{\prime}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text { and } \boldsymbol{E}_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{4} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Since

$$
\boldsymbol{P}_{1}=\boldsymbol{P}^{\prime-1}=\boldsymbol{P}^{T}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \text { and } \boldsymbol{L}_{1}=\boldsymbol{E}_{21}^{\prime-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{4} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

the factorization $\boldsymbol{A}=\boldsymbol{L}_{1} \boldsymbol{P}_{1} \boldsymbol{U}_{1}$ is hence given by

$$
\left[\begin{array}{lll}
0 & 4 & 5 \\
0 & 1 & 2 \\
2 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
\frac{1}{4} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 4 & 5 \\
0 & 0 & \frac{3}{4}
\end{array}\right] .
$$

